Eclipse Documentation
HomeBridge
  • 🐮Users
    • Getting Started
      • 1. Set Up Your Eclipse Wallet
      • 2. Bridge Assets for Gas and Transactions
      • 3. Explore the Eclipse Ecosystem
      • 4. Engage with the Community on Discord
    • User Resources
    • Unified Restaking Tokens (URTs)
    • Yield From Real World Treasury Bills
  • 🛠️Developers
    • Getting Started
    • Wallet
      • Mainnet Wallets
      • Testnet & Devnet Wallets
        • Adding Eclipse Wallet to dApp
        • Custom Wallets
    • RPC & Block Explorers
      • Dragon's Mouth gRPC Subscriptions
    • Bridges
      • Eclipse Canonical Bridge
      • Hyperlane
    • Oracles
      • Pyth Network
      • Switchboard
    • NFTs
      • Metaplex
      • Nifty Asset
      • Libreplex (Token-2022)
    • Developer Tooling
      • Faucet
      • Benchmarking
        • Running AMM benchmarking tests
      • Decentralized Identities
        • AllDomains
      • OpenBook Quickstart
      • Multisig
    • Eclipse Bug Bounty Program
    • Eclipse Status Page
    • Frequently Asked Questions
    • Differences Between Eclipse and Solana
    • Eclipse Program Registry Guide
  • 📖Tutorials & Guides
    • Developer Guides
      • Quick Start: "Hello World"
        • Deployment Walkthrough
      • Reading from the blockchain
      • Modifying a Solana dApp to Support Eclipse: "Chomping Glass"
        • Developing on the Solana Virtual Machine (SVM)
        • Multi-chain toggle frontend component
      • Dapp Deployment Tutorial - Eclipse Devnet
        • ⚙️Install Dependencies - Windows
          • Step 1: Install Visual Studio Code (VSC)
          • Step 2: Install Rust and Cargo
          • Step 3: Download Visual Studio C++ Build Tools
          • Step 4: Download Node.js
          • Step 5: Install Git on Windows
          • Step 6: Install the Solana CLI
          • Step 7: Install WSL on Visual Studio Code and Upgrade to WSL2
          • Step 8: Set Up Development Environment in Ubuntu WSL
          • Step 9: Install Anchor on Windows and WSL
        • 🏝️Solana CLI & Solana Keypair
          • Step 1: Set Solana CLI to Use Eclipse Devnet
          • Step 2: Verify Solana CLI Configuration
          • Step 3: Generate a New Solana Keypair
          • Step 4: Claim Devnet ETH for Transaction Fees
          • Optional Step: View Balance on Devnet Explorer
        • 🖥️Creating an Anchor Project in Visual Studio Code
          • Step 1: Initialize Anchor Project
          • Step 2: Update the lib.rs File with Smart Contract Code
          • Step 3: Update the Smart Contract's Cargo.toml File
          • Step 4: Update the Project's Root Cargo.toml File
          • Step 5: Compile Your Program with anchor build
          • Step 6: Deploy Your Project to the Eclipse Devnet
          • Step 7: Verify Program Deployment on the Eclipse Devnet Explorer
        • ✨Building a React App Front-End
          • Step 1: Create a New React Project with TypeScript
          • Step 2: Install Solana Web3.js and Wallet Adapter Dependencies
          • Step 3: Install Additional Dependencies for Enhanced Functionality and Compatibility
          • Step 4: Configure Webpack for Browser Compatibility
          • Step 5: Start the Development Server and Verify Setup
          • Step 6: Implement the UI for Your NFT Minter in App.tsx with Updated Code
      • Eclipse Testnet ETH Transfer Transaction Fee Estimator
        • Program Breakdown
        • Program JSX & CSS
        • Program Execution
      • Pyth: How to Use Real-Time Data in Solana Programs
      • Quick Start: User Guide - Testnet
      • cNFTs on Eclipse
        • Create 1 Million NFTs on Eclipse
        • How to Interact with cNFTs
  • 🧠Eclipse Architecture
    • What is Eclipse Mainnet?
      • Settlement - Ethereum
      • Execution - Solana Virtual Machine (SVM)
      • Data Availability - Celestia
      • Proving - RISC Zero
      • Why Eclipse, Why Ethereum, Why Now
    • Lifecycle of an Eclipse Transaction
  • 📚Additional Resources
    • External Documentation
    • Disclosures
Powered by GitBook
On this page
  • Overview
  • Lesson
Edit on GitHub
  1. Tutorials & Guides
  2. Developer Guides

cNFTs on Eclipse

PreviousQuick Start: User Guide - TestnetNextCreate 1 Million NFTs on Eclipse

Last updated 6 months ago

Overview

Compressed NFTs (cNFTs) on Eclipse utilize State Compression to drastically reduce the cost and storage requirements of minting and managing NFTs. This process involves hashing NFT metadata and storing the hash on-chain in an account backed by a concurrent Merkle tree. While the hash doesn’t reveal the NFT data directly, it can verify the accuracy of external data. Supporting RPC providers index this metadata off-chain during minting, allowing developers to access it using a Read API.

To simplify the process, abstraction layers (similar to Metaplex Bubblegum) can sit atop State Compression, enabling easier creation, minting, and management of cNFT collections.

Lesson

Compressed NFTs (cNFTs) are exactly what their name suggests: NFTs whose structure takes up less account storage than traditional NFTs. Compressed NFTs leverage a concept called State Compression to store data in a way that drastically reduces costs.

Eclipse's transaction costs are so cheap that most users never think about how expensive minting NFTs can be at scale. The cost to set up and mint 1 million traditional NFTs using the Token Metadata Program is approximately 24,000 SOL. By comparison, cNFTs can be structured to where the same setup and mint costs 10 SOL or less. That means anyone using NFTs at scale could cut costs by more than 1000x by using cNFTs over traditional NFTs.

However, cNFTs can be tricky to work with. Eventually, the tooling required to work with them will be sufficiently abstracted from the underlying technology that the developer experience between traditional NFTs and cNFTs will be negligible. But for now, you'll still need to understand the low level puzzle pieces, so let's dig in!

📖
Source